Positive definite symmetric functions on linear spaces
نویسندگان
چکیده
منابع مشابه
Deconvolution Density Estimation on Spaces of Positive Definite Symmetric Matrices
Motivated by applications in microwave engineering and diffusion tensor imaging, we study the problem of deconvolution density estimation on the space of positive definite symmetric matrices. We develop a nonparametric estimator for the density function of a random sample of positive definite matrices. Our estimator is based on the Helgason-Fourier transform and its inversion, the natural tools...
متن کاملStrictly positive definite functions on spheres in Euclidean spaces
In this paper we study strictly positive definite functions on the unit sphere of the m-dimensional Euclidean space. Such functions can be used for solving a scattered data interpolation problem on spheres. Since positive definite functions on the sphere were already characterized by Schoenberg some fifty years ago, the issue here is to determine what kind of positive definite functions are act...
متن کاملThe Gelfand transform, positive linear functionals, and positive-definite functions
In this note, unless we say otherwise every vector space or algebra we speak about is over C. If A is a Banach algebra and e ∈ A satisfies xe = x and ex = x for all x ∈ A, and also ‖e‖ = 1, we say that e is unity and that A is unital. If A is a unital Banach algebra and x ∈ A, the spectrum of x is the set σ(x) of those λ ∈ C for which λe−x is not invertible. It is a fact that if A is a unital B...
متن کاملParallel Numerical Algorithms for Symmetric Positive Definite Linear Systems
We give a matrix factorization for the solution of the linear system Ax = f , when coefficient matrix A is a dense symmetric positive definite matrix. We call this factorization as "WW T factorization". The algorithm for this factorization is given. Existence and backward error analysis of the method are given. The WDWT factorization is also presented. When the coefficient matrix is a symmetric...
متن کاملSymmetric Positive-Definite Cartesian Tensor Orientation Distribution Functions (CT-ODF)
A novel method for estimating a field of orientation distribution functions (ODF) from a given set of DW-MR images is presented. We model the ODF by Cartesian tensor basis using a parametrization that explicitly enforces the positive definite property to the computed ODF. The computed Cartesian tensors, dubbed Cartesian Tensor-ODF (CT-ODF), are symmetric positive definite tensors whose coeffici...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1973
ISSN: 0022-247X
DOI: 10.1016/0022-247x(73)90148-0